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INTRODUCTION

e efficacy and safety of a drug are often influenced by interpatient variability in pharmacokinetic 
(PK) processes such as absorption, distribution, biotransformation/metabolism, and elimination 
(ADME).[1] e physiologic processes involved in ADME reflect the actions of a variety of 
enzymes and transport proteins. Many of these enzyme systems expressed in the lungs, liver, 
intestines, and kidneys are especially critical to the processes of drug metabolism and subsequent 
elimination from the body.[2] Drug-metabolizing enzymes (DMEs) have historically been 
subdivided into phase I enzymes that catalyze oxidation, reduction and hydrolytic reactions, and 
phase II enzymes that catalyze conjugation reactions.

Many DMEs are genetically polymorphic in humans, a property that contributes to the 
interindividual variability in PK for many drugs. Historically, early reports on genetic variability 
in drug concentrations and response were for phase II DMEs, for example, N-acetyltransferases 
(NATs) and isoniazid.[3] Over time, greater focus has centered on cytochrome P450 enzymes, 
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which make up the bulk of phase I enzymes. is is not 
surprising considering that P450 enzymes contribute to the 
metabolism of approximately 75% of prescription drugs.[2] 
However, many phase II enzymes also play key roles in the 
metabolism of many clinically important drugs, and genetic 
differences affecting metabolism could lead to differential 
effects in drug response. In this review, we describe the 
current status of genetic variability in phase II DMEs 
followed by the potential clinical relevance of such variability.

GENETIC VARIABILITY IN PHASE II DMES

Phase II DMEs are called conjugation enzymes due to their 
role in facilitating the transfer of polar endogenous substrates 
onto readily available sites on drug molecules. As a result, they 
are called transferases. is section will cover genetic variations 
and its implications for major phase II enzymes: N-Acetyl 
transferases (NATs), methyltransferases (mainly thiopurine 
S-methyl transferase and catechol O-methyl transferase), 
glutathione S-transferases (GSTs), sulfotransferases (SULTs), 
and UDP-glucuronosyltransferases (UGTs).

NATs

Background

e human NAT gene locus comprises two genes, NAT1 and 
NAT2, that encode 2 enzymes (NAT1 and NAT2), responsible 
for the transfer of acetyl groups (acetylation) to aromatic 
amines and hydrazines, as well as to heterocyclic amine groups 
present in many drugs and carcinogens.[4] ese enzymes 
are responsible for the acetylation of a variety of drugs, but 
the highly polymorphic NAT2 is known for its role in the 
N-acetylation of several antituberculosis agents including 
isoniazid and pyrazinamide. It is also responsible for acetylating 
sulfonamide-containing antibiotics (sulfamethazine and 
sulfamethoxazole) and the antihypertensive agent, hydralazine. 
e correlation between NAT2 genotype and acetylation 
phenotype is a classic in the field of pharmacogenomics and 
has been extensively reviewed.[5-9]

Results from early experiments with isoniazid identified 
a bimodal distribution in urinary acetylated metabolites 
and led to the assignment of “slow” and “rapid” acetylator 
phenotypes. ese studies also showed that not all 
N-acetylated drugs exhibited this polymorphism, and for 
those that did, NAT2 was the enzyme responsible. Later 
studies suggested that the acetylator phenotype was more 
trimodal than bimodal incorporating the “intermediate” or 
“heterozygous rapid” acetylator phenotype.[10,11]

Genetic variation and testing

e reference allele for the NAT2 gene is the NAT2*4 allele. 
Phenotypic expression (acetylation) of this allele is described 

as rapid, intermediate, and slow for individuals with two, one, 
or zero copies of the *4 allele. e various haplotypes identified 
for NAT2 are available online.[12] e most common single-
nucleotide polymorphisms (SNPs) and nucleotide changes 
associated with acetylator phenotypes are rs1801279 (191G > A), 
rs1041983 (282C > T), rs1801280 (341T > C), rs1799929 (481C 
> T), rs1799930  (590G > A), rs1208  (803A > G), and 
rs1799931  (857G > A). Varying combinations of these yield 
the characterized NAT2*5, *6, *7, and *14 (slow acetylator) 
and the NAT2*11, *12, and *13 (rapid acetylator) haplotypes. 
Each of these numbered alleles have several clusters of these 
SNPs assigned and are designated with an alphabet suffix for 
differentiation (e.g., the *5 haplogroup has the NAT2*5A to 
*5V haplotypes). e 7 SNPs above serve as the basis for NAT2 
genotyping, although there is an extremely wide variation 
of allele frequencies between and within various ethnic 
groups.[13-15]

e marked variation in allele frequencies[14,16] has generated 
differing opinions on the usefulness of the seven SNP panels. 
In 2011, a tag SNP (rs1495741) was identified from genome-
wide studies.[17,18] For economies of scale in genotyping, 
especially for resource-constrained areas, efficient SNP 
selection was advocated based on computational strategies[19] 
with 2-, 3-, and 4-SNP panels proposed and tested.[20] e 
ability of the tag SNP to infer acetylator phenotype has been 
compared with the 2, 3, 4, and 7 SNP panels; the 4-SNP 
panel is suggested to maximize sensitivity and specificity, 
particularly in populations of non-European ancestry in 
whom inference of NAT2 phenotypes from SNP panels has 
been problematic.[21-24]

Methyltransferases

Methyltransferases are responsible for catalyzing the transfer 
of methyl groups to suitable donor atoms – (O, N, and S) 
on both endogenous and exogenous compounds, utilizing 
the methyl donor, S-adenosylmethionine. e 2 enzymes 
responsible for the majority of phase II drug methylation are 
the catechol-O-methyltransferases (COMT) and thiopurine 
S-methyltransferases (TPMT).

COMT

Background

COMTs are responsible for the O-methylation of biogenic 
catecholamines such as the neurotransmitters dopamine, 
epinephrine, and norepinephrine, as well as catechol-
containing drugs such as the antihypertensive drug, 
methyldopa, and antiparkinsonian drug, L-dopa. It also 
methylates other endogenous catechol compounds such 
as the catechol estrogens formed in vivo from estrone and 
17β-estradiol.[25] e pharmacogenetics of COMT has been 
reviewed by Weinshilboum et al.[25] and the distribution of 
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genotypes differs by ethnicity. With respect to genotype–
phenotype correlations, functional polymorphisms leading 
to high and low activity forms of the soluble enzyme have 
been identified; these can be phenotyped by measuring 
erythrocyte COMT activity.[26]

Genetic variation and testing

e first COMT polymorphism, described by Lachman 
et al.,[26] was the functional polymorphism rs4680 322/472 G 
> A (Val108/158Met substitution in the soluble or membrane-
bound forms of the enzyme, respectively). e major G (or 
Val) allele is expressed as the high COMT activity allele and 
the A (or Met) as the low activity allele. ere are ethnic 
differences in prevalence; the frequency of the A allele ranges 
from 29% to 51% in Asian and European populations.[26] 
While rs4680 is a key COMT variant, 3 other SNPs, rs6269 
A > G, rs4633 C > T, and rs4818 C > G, found in a tightly 
linked haploblock have been combined with it to yield 
high, intermediate, and low activity COMT haplotypes.[27] 
ere is currently no defined star (*) allele nomenclature 
for COMT. In addition to the 4 SNPs mentioned, other 
studies have included rs737865 A > G, rs9332377 C > T, 
and rs165599 G > A SNPs.[28,29] To date, rs4680 remains 
the only functional COMT non-synonymous coding SNP, 
although a single association study identified another 
functional non-synonymous SNP rs6267 G > T (Ala72Ser 
substitution in the membrane bound form).[30] Other studies 
have reported functional haplotypes that include rs4680 and 
other synonymous coding SNPs (rs4633, rs4818).[31,32] Many 
of these COMT SNPs are represented on large-scale genome 
and exome-wide genotyping chips and rs4680 remains the 
most commonly referenced COMT SNP in commercial 
genotyping panels.[33]

TPMT

Background

TPMT catalyzes the S-methylation of thiopurine drugs 
such as azathioprine (AZA), 6-mercaptopurine (6-MP), 
and thioguanine (TG), as well as other heterocyclic sulfur-
containing compounds.[34] TG and 6-MP are widely 
used for the treatment of lymphoid (6-MP) and myeloid 
malignancies,[35,36] and AZA and 6-MP are used to treat non-
malignant conditions such as inflammatory bowel disease, 
systemic lupus erythematosus, and rheumatoid disease. All 
three compounds are prodrugs that are activated to the same 
TG nucleotide (TGN) active metabolites; TPMT tempers 
this activation process by yielding inactive methyl 6-MP and 
methyl TG compounds.[37]

iopurines have a class effect of cytotoxicity, with a side 
effect profile that includes severe myelosuppression. e 
clinical implication is that individuals with low TPMT 

activity have higher blood levels of active TGN metabolites, 
and thus greater myelosuppression. e risk of developing 
life-threatening myelosuppression has been shown to be 
greatest in individuals with very low red cell TPMT activity 
treated with “standard” doses of thiopurines.[38] is 
relationship between TPMT activity and TGN levels was 
demonstrated in key studies reporting both trimodality[39] 
and a correlation between TPMT activity and TGN levels.[40,41] 
e pharmacogenetics of TPMT has been extensively studied 
and validated and a concise summary of the enzyme is 
available.[42] is summary along with information regarding 
its genetic architecture and relevant clinical annotations 
is also found on the Pharmacogenomics Knowledge Base 
(PharmGKB) website.[43,44]

Genetic variation and testing

TPMT genotypes are grouped into predicted phenotypes 
of normal or high activity, intermediate activity, and low 
or deficient activity based on the number of functional or 
variant alleles present. e reference allele for TPMT is the 
*1 or the high activity allele. Variant alleles representing 
low or deficient activity include *2 (rs1800462 C > G), *3A 
(rs1142345 T > C and rs1800460 C > T), *3B (rs1800460), 
*3C (rs1142345), and *4 (rs1800584 C > T). e *3A is a 
combination haplotype of the *3B and C alleles and is the 
most common TPMT variation in Caucasians (frequency 
of approximately 5%).[45] e *3C occurs more frequently in 
East Asian and African American populations, exemplifying 
the finding of major ethnic differences in allele frequency. 
TPMT phenotype was initially obtained from erythrocyte 
TPMT activity;[9,39] however, as with other DMEs, genotyping 
is now typically used to predict phenotype. ere are over 
40 variant alleles reported on PharmGKB and the TPMT 
allele nomenclature websites.[44,46] ere are commercial and 
in-house Clinical Laboratory Improvement Amendments 
approved assays for TPMT genotyping with extremely high 
call rates, concordance, and accuracy.

GSTs

Background

e GSTs are a diverse group of enzymes responsible for 
conjugating reduced glutathione to electrophilic centers 
present on a variety of substrates, including endogenous 
and exogenous compounds. GSTs are implicated in drug 
metabolism as well as detoxification (and sometimes 
activation) of procarcinogenic agents.[2] ey catalyze 
glutathione-conjugated inactivation of the anticancer 
agents, etoposide and busulfan, and the platinum-derived 
compounds; cisplatin, oxaliplatin, and carboplatin, in 
addition to drugs such as isoniazid, rifampicin, and 
pyrazinamide.
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GSTs belong to a superfamily of soluble enzymes that have 
been further subdivided into different classes – alpha, delta, 
kappa, mu, omega, pi, theta, zeta, and microsomal proteins. 
Unlike many of the genes encoding other DMEs, each 
GST member has a unique chromosomal location.[47] Four 
of these, GST alpha (GSTA), GST theta (GSTT), GST mu 
(GSTM), and GST pi (GSTP), encoded by the GSTA1, GSTT1, 
GSTM1, and GSTP1 genes, respectively, are implicated in 
phase II metabolism and are the most studied with respect to 
their pharmacogenetics.

Genetic variation and testing

GSTA1 is a major hepatic GST enzyme,[48] but has few genetic 
variations and those present are either of no known relevance 
or of minimal clinical importance.[49] GSTM1, GSTP1, and 
GSTT1, on the other hand, are more polymorphic, with 
GSTM1 and GSTT1 possessing common insertion/deletion 
(InDel) variants.[48]

In GSTM1, there is a common deletion expressed as a null 
allele or a non-null allele for the insertion variant, and a 
promoter SNP, rs3754446A > C, occurring with different 
ethnic frequencies (ranging from 1% to 6% in those of 
African ancestry to 67% in Asians). In GSTT1, there is also a 
deletion polymorphism characterized as the null or GST*0 or 
GST1 negative allele as well as rs1007888C > T and rs4630> 
A SNPs.[50-53] GSTP1 has no known deletion polymorphisms. 
Rather, there are two common non-synonymous SNPs, 
rs1695G > A (Ile105Val) and rs1138272C > T (Ala114Val), 
that appear to lower enzyme activity.[54,55]

All common GSTT1, GSTM1, and GSTP1 polymorphisms 
are represented on many commercial genotyping panels and 
are part of core ADME gene lists.

SULTs

Background

Human SULTs are responsible for the sulfate conjugation 
of many important endogenous compounds and drugs. 
Substrate specificity differs for each SULT enzyme family 
of which the best characterized are SULT1A, 1B, 1C, 2A, 
2B, and 4A families.[54] e SULT1A family is composed of 
SULT1A1, 1A2, and 1A3 enzymes that catalyze the sulfate 
conjugation of phenolic compounds, including simple 
phenols like nitrophenol, as well as catecholamines. Well-
known substrates include drugs such as acetaminophen, 
dopamine, and minoxidil. Of all the SULT enzymes, SULT1E1 
has the highest substrate affinity and is responsible for the 
sulfation of both natural and synthetic estrogens, while other 
steroid hormones are sulfated mostly by the SULT1B and 
2B families.[56-58] Genotype–phenotype correlation for SULT 
activity was initially conducted using biochemical assays 

for SULT1A1 and subsequently SULT1A2 enzymes.[59,60] 
ese studies showed over 50-fold variation in phenotypic 
(biochemical) activity in human platelet SULT activity that 
correlated with low- and high-activity genotypes.

Genetic variation and testing

e SULT isoforms currently implicated in human phase 
II drug metabolism are SULT1A1, 1A2, 1A3, and 1E1, all 
encoded by highly polymorphic genes. SULT1A1 is the 
most abundant and most important. is isoform has four 
haplotypes assigned – *1 the reference allele, *2 (rs9282861 
G > A), *3 (rs1801030 G > A), and *5 (rs28374453 T > C). 
In addition, three SNPs in the coding region of the gene, 
SULT1A1, have copy number polymorphisms (X2 to X5, 
reflecting 2–5 copies of the gene) and two promoter SNPs 
rs3760091 G > C and rs750155 G > A that are of functional 
importance.[61]

SULT1A2 has three haplotypes assigned, *1 the reference 
allele, *2 (with two variants rs1136703 A > T, C, G and 
rs1059491 T > G), and *3 (rs10797300 C > G). All the 
above-listed SULT1A SNPs are non-synonymous coding 
polymorphisms that cause amino acid changes.

SULT1E1, encoding the only member in the 1E family, has 
four haplotypes assigned with the reference allele designated 
as *1 and 3 other polymorphic alleles differing in single 
nucleotide variations from the reference designated as 
*2 (rs11569705 C > A), *3 (rs34547148 G > A), and *4 
(rs11569712 G > T). As with the SULT1A genes, these SNPs 
are non-synonymous coding polymorphisms. e SULT1E1 
variants occur at very low frequencies, ranging from 0.5 to 
0.9% for the *2 and *4 alleles, and there is no well-defined 
minor allele frequency for the *3 variant. With respect 
to genotyping tests, only SULT1A1 polymorphisms are 
represented (with varying degrees of SNP and copy number 
coverage) on some commercial genotyping platforms.

UGTs

Background

e superfamily of enzymes responsible for the conjugation 
of a glucuronic acid moiety onto suitable acceptors on a wide 
range of endogenous and exogenous substrate compounds 
are known as UDP-glucuronosyltransferases or uridine 
diphosphoglucuronosyl transferases (UGTs). e products of 
this conjugation are called glucuronides. Glucuronidation is 
an efficient metabolizing process contributing to over 30% of 
all phase II drug metabolism.[62] In addition to playing a role 
in the metabolic elimination of oral drugs, glucuronidation 
also serves a protective function through detoxification and 
elimination of carcinogens. Human UGTs are found in two 
main families – UGT1 and UGT2.
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UGT1

e UGT1 gene family is composed of 12 UGT1A genes on a 
large and complex locus. e complexity occurs because each 
UGT1A gene has a unique exon 1 spliced to four common 
conserved exons (2–5).[63] Each gene is named UGT1A1 to 
UGT1A12 based on the proximity of the unique first exon 
to the shared ones. Although 12 distinct gene products exist 
in humans, four of these, UGT1A2, UGT1A11, UGT1A12, 
and UGT1A13, are pseudogenes. Genetic variations 
spanning the range of polymorphism mechanisms have 
been reported for all UGT1A active gene products and 
many have been characterized and studied in detail.[64-66] e 
pharmacogenetics of UGTs and their role in health, disease, 
and cancer have been extensively reviewed.[67-90]

UGT2

Enzymes in the UGT2 family fall into either 2A or 2B 
subfamilies. UGT2A members are mostly olfactory enzymes 
implicated in the detoxification of airborne xenobiotics and 
toxins. UGT2B enzymes, on the other hand, are responsible 
for the glucuronidation of both drugs and endogenous 
steroid hormones. Of the human UGT2 enzymes, UGT2B7, 
2B15, and 2B17 are the most studied, although UGT2B7 
seems to be the isoform with the greatest contribution to the 
glucuronidation of clinically useful entities.[72,91-94]

Genetic variation

e complexity of the UGT1A locus and its shared exons 
confers the advantage that many enzyme isoforms have 
overlapping substrate specificity. is could explain the 
fact that although several functional polymorphisms 
exist, effects are usually not large enough for meaningful 
clinical correlations. e one exception is UGT1A1, the 
sole enzyme responsible for bilirubin glucuronidation. 
A  genetic difference in bilirubin clearance (leading to 
familial hyperbilirubinemia) has been ascribed to a key 
polymorphism (rs8175347 or TA5/6/7/8) in the promoter 
region) resulting in variable enzyme expression and function. 
is variation, a short tandem TA repeat polymorphism, 
has the greatest clinical relevance among known UGT1A 
polymorphisms. Individuals with 6 TA repeats (UGT1A1*1) 
have normal UGT1A1 protein expression (and activity), 
carriers of 7 (UGT1A1*28) and eight repeats (UGT1A1*37) 
have reduced enzyme activity, and those with 5 TA repeats 
(UGT1A1*36) have increased protein expression in vitro.[60-62] 
Reported allele frequencies for UGT1A1*28 are between 0.26 
and 0.31 in Caucasians and 0.42–0.56 in African Americans. 
UGT1A1*36 and *37 are almost exclusive to African 
populations (allele frequencies between 0.02 and 0.1). e 
*28 allele is rarely found in Asian populations; rather, a 
functional SNP in exon 1 rs4148323G>A (UGT1A1*6) with 

allele frequencies of 0.16–0.22 is responsible for the reduced 
bilirubin conjugation phenotype.[95]

Associated haplotypes for all defined UGT SNPs are on the 
UGT allele nomenclature website.[96] In UGT1A3, two non-
synonymous SNPs in the promoter region, rs2007584A > G and 
rs1983023T > C, constitute the *2 haplotype which has been 
linked to increased atorvastatin inactivation by lactonization 
both in vitro and in vivo.[79,97] In UGT1A6, similar to UGT1A3, 
two non-synonymous SNPs, rs1105879 A > C and rs2070959, 
are found in the *2 haplotype associated with high activity in 
vitro. UGT1A6 polymorphisms have been implicated in aspirin 
metabolism and colorectal cancer risk.[77,98] For UGT1A9, one 
of the most studied polymorphisms is rs3832043T>-, a deletion 
polymorphism located in the promoter region (UGT1A9*1b 
formerly named UGT1A9*22).[76,99] is polymorphism has 
been implicated in the PKs and side effect profiles of irinotecan 
and mycophenolic acid.[73,80,100,101]

DISCUSSION – PHASE II DME GENE-BASED 
PRESCRIBING POTENTIAL AND PROGRESS

For a DME genetic variant to be clinically useful, certain 
fundamental criteria are required. First is the mapping, 
identification, and characterization of genes (and variants) 
involved in the drug’s disposition. Next is the establishment 
of a reproducible and predictable association between the 
variants and a measurable phenotypic response. For many 
DMEs, the response is typically altered PKs. It is important, 
however, to consider that genetic variation is not the only 
cause of altered drug concentrations. Interactions with 
other drugs and food could also result in variable drug 
concentrations. us, functional variants may have little 
clinical relevance unless there is a genetic signal large enough 
to overcome the effects of other sources of variability.

e next step involves developing a standardized genotyping 
test. is is usually followed by a confirmation of the 
predictive value of genotyping, ideally under rigorous, well-
defined conditions such as prospective clinical studies. On 
confirmation and validation of predictive value, adoption of 
genotyping in the clinic is usually dependent on the magnitude 
of effect and the clinical consequences conferred by the defined 
genetic variability. Figure 1 depicts a representative flow chart 
of the multiplicity of processes involved in determining the 
clinical utility of any identified DME variants with a potential 
for altering human drug responses.

Clinical studies – progress, implications, and 
recommendations

NATs

is class of enzymes is involved in the metabolism of many 
drugs and possesses genetic variants mostly implicated in 
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clinical studies of acetylator phenotypes and isoniazid effects 
and toxicity. Other NAT pharmacogenetic areas of interest 
include adverse events such as skin reactions with sulfonamides 
and drug-induced lupus with hydralazine [Table 1].

Isoniazid remains a first-line drug for the treatment of latent 
and active tuberculosis, but problems include hepatic injury 
and treatment failure. Both problems have been associated 
with genetic differences in acetylation capacity, but the 
evidence is mixed with some studies reporting conclusive 
associations and others little or no association. Various meta-
analyses of hepatic injury associated with antituberculosis 
drugs attributed an odds ratio between 1.59 and 4.7 to the 
slow acetylator genotype and risk of developing hepatic 
injury.[102-106] is association was more robust in individuals 
of Asian, Middle Eastern and Brazilian ancestry, with no 
significant associations for Caucasians, and very limited data 
in the African population.

As concerning isoniazid-associated hepatic injury, treatment 
failure for tuberculosis could have broader clinical and economic 
consequences since second-line drug regimens are usually 
more expensive and toxic. It has been hypothesized that rapid 
acetylators, due to extremely rapid inactivation of the parent 

isoniazid, do not attain adequate blood levels for optimal 
therapeutic response. e concept of using pharmacogenetics-
guided isoniazid dosing to treat pulmonary tuberculosis using 
the WHO-recommended 6-month four-drug regimen was 
tested in a prospective randomized clinical trial.[107] Based on 
the results of PK dose-ranging studies, the isoniazid genotype-
guided dose for slow and rapid acetylators was 0.5 and 1.5 times 
the standard dose used for intermediate acetylators, respectively. 
Despite the small sample size for slow (n = 7) and rapid (n = 44) 
acetylators in the pharmacogenetics guided arm and n = 9 and 
48 in the standard treatment arm, the results were interesting. 
Hepatic injury occurred in 7 of 9 slow acetylators (78%) 
receiving standard dosing and in none of the seven who received 
pharmacogenetic-guided doses. In rapid acetylators, there was a 
significantly lower incidence of treatment failure in the test arm 
(15%) compared to standard treatment (38%). is study along 
with others modeled around it[108] illustrates the potential for 
NAT2 genotype guided dosing, at least in the context of isoniazid.

Recommendation

Although there is no clear consensus regarding the clinical 
utility of NAT2 genotyping, the potential of NAT2 genotype-

Figure  1: Simplified flowchart of criteria involved in determining clinical utility of any identified 
drug-metabolizing enzyme variants with the potential for altering drug response in humans.

Table 1: Key Phase II genes with clinical therapeutic consequences due to genetic variation.

Gene Enzymatic reaction implicated Drug and therapeutic use Clinical consequences of impaired or decreased 
metabolism due to genetic variation

TPMT* S-Methylation 6-iopurines (anti-cancer) Myelotoxicity.
UGT1A1* Glucuronidation Irinotecan (anti-cancer) Reduced clearance. Dose adjustment may be required to 

avoid toxicity (GI dysfunction, and immunosuppression).
GST GSH Glutathione-conjugation Busulfan (anti-cancer) Impaired GSH conjugation due to gene deletion.
NAT2 N-Acetylation Hydralazine (antihypertensive) Lupus erythematosus-like syndrome.

N-Acetylation Isoniazid (antitubercular) Peripheral neuropathy.
*Genes (and enzymes) with PGx-based therapeutic recommendations, TPMT: iopurine methyl transferases, UGT1A1: Uridine diphosphoglucuronosyl 
transferase, GST: Glutathione S-transferases, NAT2: N-acetyltransferase, GSH: Glutathione
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guided regimens for isoniazid-based therapies bears 
consideration for use in treatment. is genotype-guided 
consideration may be most relevant for populations with 
a high TB burden and a prevalence of slow acetylators. 
e WHO over a decade ago recommended an increase 
in standard dosing for isoniazid from 5 to 10  mg/kg body 
weight for pediatric patients (Rapid advice: Treatment of 
Tuberculosis in Children, WHO, 2010). is higher dosing 
most likely favors increased efficacy in rapid acetylators while 
posing a greater risk of hepatotoxicity for slow acetylators. 
As a result, the potential utility of genotyping remains 
important, and more clinical studies clearly defining the 
relationship between acetylator status and isoniazid efficacy 
or toxicity will be helpful.

Methyltransferases

COMT

For COMT, the most relevant associations include those for 
exogenous levodopa used in the treatment of Parkinson’s 
disease, and entacapone, the direct COMT inhibitor, used 
as an adjunct to boost effects of levodopa. ere are studies 
on COMT genotypes and response to levodopa with some 
finding no association, and others showing the association 
between increased levodopa doses and greater functional 
activity COMT haplotypes.[26,109,110] A recent meta-analysis 
confirmed an association between the well-studied rs4680 
and levodopa-induced dyskinesia.[111] e association 
between entacapone effects and COMT genotypes has also 
been inconsistent.[112,113]

Recommendations

Although a recent review on Parkinson’s disease called 
for personalized treatments relying on pharmacogenetic 
procedures to optimize therapeutics in its management,[114] 
there is not enough evidence for using COMT 
pharmacogenomics profiles for gene-based prescribing.

TPMT

TPMT is one of the most successful examples of translating 
genetic variation in a DME into clinically relevant gene-based 
prescribing (for the purine-based analogs – azathioprine, 
6-MP, and TG). e association between thiopurine use and 
risk of severe, potentially fatal myelosuppression, particularly 
in patients homozygous for TPMT low-activity variant 
alleles, has been long documented, especially in pediatric 
acute lymphoblastic leukemia.[115-118] For non-malignant 
conditions (e.g., inflammatory bowel disease) [Table 1], 
results are more mixed with earlier studies reporting 
associations and yet others reporting a lack of association 
between TPMT low-activity genotypes and azathioprine 

toxicity.[119-122] One plausible explanation for this discrepancy 
includes the lower doses used in non-malignant conditions 
compared to malignancy, and small sample sizes that may 
not include individuals at greatest risk of serious toxicity; the 
approximately 0.3% of patients are homozygous for TPMT 
low-activity alleles.

Recommendations

TPMT genotyping and dose adjustment recommendations 
are on FDA drug label information for thiopurine 
drugs. ere are also guidelines published by the 
Clinical Pharmacogenetics Implementation Committee 
(CPIC)[36,123] on the use of genotyping for thiopurine drug 
therapy available for reference on both the CPIC and 
PharmGKB websites.[43,124] Suggested recommendations are 
stratified by thiopurine use in malignant and non-malignant 
conditions; information about genotype-based dosing by 
TPMT diplotype can be obtained from PharmGKB and from 
NCBI’s Medical Genetics Summaries.[125]

GSTs

GSTs are involved in the disposition of alkylating agents 
such as busulfan and thiotepa, as well as the platinum-
based compounds cisplatin, oxaliplatin, and carboplatin, the 
mainstay of chemotherapy for many cancers. e toxicities 
seen with many of the anticancer agents conjugated by 
glutathione have been attributed in part to the depletion 
of cellular glutathione, which leads to a buildup of toxic 
products and, subsequent, DNA damage. As a result, 
individuals with null variant genotypes may be predisposed 
to increased drug toxicity but better response due to greater 
intracellular drug accumulation.

Pharmacogenetic studies on drug response or toxicity and 
GST polymorphisms have produced inconsistent results. 
For GSTM1 and GSTT1, most studies have focused on the 
null/non-null variants. Studies have reported an association 
between non-null GST genotypes and increased risk of 
ototoxicity in male testicular cancer survivors and in pediatric 
patients with solid tumors with odds ratios of 2.76 (1.35–5.64) 
and 10  (1.8–56.0), respectively.[126,127] e study on testicular 
cancer survivors had a haplotype consisting of the GSTM1 and 
GSTT1 null polymorphisms and the GSTP1 rs1695 A > G SNP; 
the other study reported only an association with the GSTT1 
null genotype. e GSTM1/GSTT1 double null haplotype 
has also been associated with lower clearance of intravenous 
busulfan in adult patients undergoing hematopoietic stem 
cell transplantation, although the association was no longer 
present when the effects of the individual GST null variations 
were modeled.[128] One study reported an association 
between a SNP (rs4630) in GSTT1 and thalidomide-induced 
neuropathy in multiple myeloma.[129] is study reported that 
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23% of heterozygous carriers of the minor allele experienced 
toxicity compared to 60% of the homozygous patients; 
however, the cohort was small (28  patients), thus limiting 
interpretation of the findings.

GSTP1 has no null polymorphisms but has a well-studied 
functional SNP rs1695 (Ile105Val). Within the GST 
superfamily, this SNP probably has the most associations 
ascribed to it, and implicated in studies related to toxicity, 
response, and overall survival in colorectal cancer.[130,131] e 
minor G (Val) allele was associated with increased survival 
in patients receiving 5-FU/oxaliplatin therapy (median 
progression-free survival of 24.9, 13.3, and 7.9  months 
for patients bearing 2, 1, and 0 copies, respectively). is 
observation was subsequently validated in a second study.[132,133] 
Two other studies also confirmed a positive benefit on survival 
and response rate for patients bearing the G alleles.[134,135] 
However, in studies of ovarian and breast cancer, the opposite 
has also been observed with the major A allele being associated 
with increases in response rate and overall survival.[136-138] 
Some reasons for the differences in association trends could 
depend on the type of cancers studied as well as the regimens 
used. With respect to drug toxicity caused by platinum agents, 
an early pivotal study found an increased risk of neurotoxicity 
with the GG genotypes[139] while others reported an increase in 
neurotoxicity with the AA genotypes.[140,141]

Recommendations

Despite the numerous studies cited on pharmacogenomic 
studies of GSTs and pharmacotherapy with cytotoxic agents 
such as busulfan and platinum-containing agents, there is 
inadequate evidence to suggest that genotyping for GST 
polymorphisms would alter current standards of therapy.

SULTs

ere are few clinical studies examining the 
pharmacogenetics of SULT enzymes and most have 
addressed cancer risk, which is beyond the scope of this 
review. SULT1A1 pharmacogenetic associations have been 
studied for a role in the metabolism of tamoxifen, a mixed 
estrogen receptor agonist/antagonist, used as an adjuvant 
treatment for breast cancer. Results are mixed with better or 
worse outcomes associated with the SULT1A1*2 allele.[142-145]

Recommendations

At present, there is inadequate evidence to support the 
clinical utility of SULT genotyping.

UGTs

Most clinical studies have focused on the TA repeat 
polymorphism and the disposition of the anticancer agent, 

irinotecan. e TA repeat polymorphism was reportedly 
associated with irinotecan side effects such as neutropenia and 
diarrhea due to the decreased ability of TA7 carriers to clear 
the active metabolite SN-38 as the glucuronide.[74,82] However, 
not all studies have supported this finding with many studies 
finding no association between UGT1A1*28 [Table 1] and 
irinotecan response or side effects and instead contending 
that pharmacogenetic findings are dependent more on a 
combination of haplotypes from UGT1A genes.[73,76] Different 
meta-analyses on associations between UGT1A1 genotypes 
and irinotecan response and toxicity have effectively summed 
information about genetic associations with irinotecan dosing 
and side effects.[82,88,90] Dias et al.[88] examined the difference in 
objective response rate (ORR) between cancer patients with 
different UGT1A1*28 genotypes (homozygous, heterozygous, 
and wild type variants) receiving irinotecan-based therapies 
and found no differences in ORR based on genotype. 
Another study carried out subgroup analyses with different 
irinotecan dose and combination regimens and found a 
greater than four-fold increased risk of neutropenia with the 
UGT1A1*28 homozygous genotype compared to wild type. 
e risk of diarrhea was increased two-fold and limited to 
high dose irinotecan or combined use with 5-fluorouracil or 
its analogs.[90] e potential for individualization of irinotecan 
dose based on UGT genotype has been proven to improve 
clinical care in multiple PK and dose-optimization studies 
conducted from the time of initial reports.[146-150]

Recommendations

e TA repeat polymorphism (UGT1A1*28 in the Caucasian 
population) was one of the earliest pharmacogenomic 
biomarkers approved by the United States FDA for reference 
on a drug label.[151] e agency-approved label for one 
irinotecan product has the following stated recommendation 
– “when administered in combination with other agents or as 
a single agent, a reduction in the starting dose by at least one 
level should be considered for patients known to be homozygous 
for the UGT1A1*28 allele” with no precise dose reduction 
provided. Another product, however, has a dose specification 
with a caveat to consider dose modifications based on 
individual tolerance to treatment (50 mg/m2 administered by 
intravenous infusion over 90 min, with an increased dose to 
70 mg/m2 as tolerated in subsequent cycles).[152]

CONCLUSION

e implementation and clinical translation of phase II 
DME pharmacogenomics has advanced substantially 
from case reports and observations based on serendipity 
and small series of cases to the current state of using 
prospective well-designed trials to yield evidence for clinical 
utility. Genotyping for variants in 2 of the 5 major phase 
II DME superfamilies, TPMT and UGT1A1, is in clinical 
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use. However, for other phase II enzymes, the evidence 
supporting clinical utility is either weak or inconsistent. 
Further, characterization of NAT2 pharmacogenomics is of 
great interest due to the potential to improve the treatment of 
tuberculosis, a serious endemic disease.

REVIEWERS’ EXECUTIVE SUMMARY

Phase II enzymes are a major class of human DMEs that 
contribute to the metabolism of many drugs.

•	 ey are responsible for drug detoxification through 
conjugation reactions

•	 e major phase II enzymes are NATs, methyltransferases, 
GSTs, SULTs, and glucuronosyltransferases.

Phase II enzymes are underrepresented in the clinical 
implementation of pharmacogenetic testing

•	 Historical to the current scope of studies exploring key 
pharmacogenomic variants with evidence for the utility 
of this information in clinical practice is presented.

Perspectives on recommendations for genotype-based 
prescribing based on available clinical evidence include

•	 NAT2 genotyping may have potential utility in isoniazid-
based regimens but additional studies are required

•	 ere is not enough evidence to guide recommendations 
for COMT and SULT genotyping

•	 Evidence for the potential clinical utility of genotyping 
GST polymorphisms is conflicting

•	 TPMT genotype-guided therapy for thiopurine dosing is 
implementable in a variety of clinical settings

•	 UGT1A1*28 genotype is associated with an increased risk 
of irinotecan toxicity and there is evidence for the use of a 
genotype-guided approach to irinotecan dosing in cancer.
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